6 трюков статистики, которые покажутся вам волшебством

21-05-2015, 23:20
3 686
0
6 трюков статистики, которые покажутся вам волшебством

Вероятность управляет всей нашей жизнью, а мозг не способен сходу ее вычислить. Игорная промышленность отвергает этот факт: скажите кому-то, что есть 1 из 100 000 000 шансов на выигрыш в лотерее, и они скажут — «Похоже, кто-то победит!»

Мы не можем обвинять их — есть много ситуаций, когда вероятность похожа на черную магию. Просто попытайтесь понять, что…

6 трюков статистики, которые покажутся вам волшебством

1. Вы можете «обмануть» игру «Орел или решка», делая ход вторым

Условие:

Представим, что кто-то бросает вам вызов в игре «орел-решка». Правила просты — каждый из вас предсказывает последовательность из трех бросков, либо орел, либо решка. Затем вы бросаете монету до тех пор, пока составится одна из ваших последовательностей. Если последовательность вашего соперника появляется первой, вы даете ему 20 $. Если же первой складывается ваша комбинация — его двадцатка ваша. Если вы оба играете честно, кажется, что ваши шансы на выигрыш составляют 50 на 50, не так ли?

Решение:

Даже если у вас нет монет с секретом, зеркал или магнита, и вероятность каждого броска действительно 50 на 50, вы все еще можете манипулировать игрой. У вашего соперника есть 87-процентный шанс обыграть вас, и секрет в том, чтобы сделать свой ход вторым. Допустим, человек, совершивший первый ход, назвал: «орел, орел и решка». Задача второго игрока — запомнить и выполнить два шага:

1. Ваше первое название должно быть противоположным второму названию соперника. В этом случае — решка.

2. Ваши второе и третье названия должны совпадать с первыми двумя названиями соперника. В этом случае — орел, орел.

Если вы будете следовать этим правилам, ваши шансы на выигрыш всегда будут выше, иногда незначительно, а иногда и намного больше, чем у соперника. Если вы не верите нам, попробуйте сами и убедитесь. Это называется «нетранзитивная игра». То есть, каждый выбор, который вы можете сделать, либо лучше, либо хуже, чем любой другой возможный вариант. Это практически то же самое, что и игра «Камень, ножницы, бумага», только в этом случае, делая первый ход, вы говорите своему противнику, выбираете вы камень, бумагу или ножницы, прежде чем он сделает свой выбор. Поэтому не ходите первым. Следуя вышеупомянутым правилам, вы почти всегда сможете повернуть все в свою пользу.

6 трюков статистики, которые покажутся вам волшебством

2. В небольшой группе людей вероятность того, что у двоих из них день рождения приходится на один и тот же день, составляет почти 100%

Условие:

Допустим, вы пришли на какую-то вечеринку с кучей незнакомых вам людей (потому что ваш друг сказал, что вечеринка будет потрясающей). И пока вы с чувством огромного дискомфорта стоите в ожидании землетрясения или чего-то ещё, что дало бы веский повод уйти, к вам подходит один из участников праздника и как будто невзначай упоминает, что сегодня у него день рождения.

«Не может быть!» — скажете вы. «У меня тоже сегодня день рождения! Неужели это возможно?»

Решение:

При условии, что никто из вас не врет, шансы невероятно высоки. Вероятность того, что в группе всего из 23-х человек у двоих день рождения в один день, равна примерно 50%.

В этом легко запутаться: так как в году есть 366 возможных дней (с учетом високосного года) и только 23 человека в группе, кажется, что вероятность совпадения дней рождения равна 1 к 15. Это верно если вы говорите о шансах кого-либо одного разделить свой день рождения с другим человеком. Но мы говорим о двух людях.

Итак, когда вы встречаете одного человека, шанс, что у вас с ним день рождения в один день фактически один из 366. Когда вы встречаете другого человека, этот шанс также один из 366. Но для вычисления возможности совместного дня рождения любых двух людей, вы должны перемножить все вероятности, что в результате даст один шанс из 122. С увеличением количества людей вероятность того, что дата рождения каждого из вас уникальна, уменьшается намного быстрее, чем вы могли бы предположить — у 10 человек есть 10-процентный шанс совпадения дня рождения, в то время как у 20 человек этот шанс равен уже 40%.

Если вам это все еще кажется колдовством, вы можете взять в Интернете список из 20 случайных людей — например, список игроков спортивной команды. В списке из 25 игроков найдется две пары, празднующих день рождения в один день.

6 трюков статистики, которые покажутся вам волшебством

3. Перетасовывая колоду карт, вы создаете последовательность, которая никогда ранее не существовала

Условие:

Допустим, вы сдаете карты в игре в покер. При этом уточним: вы — опытный сдающий, а не один из тех людей, которые просто неумело крутят карты в руках как дети. Вы мастерски тасуете карты, перебрасываете их из руки в руку, жонглируете, и т. д., пока, в конечном счете, не приходите к выводу, что карты расположены в абсолютно случайном порядке.

Каковы шансы, что конфигурация колоды, которую вы сейчас держите, такая же, как той, которую вы перемешивали в прошлый раз? Один шанс из 1000? Один из 10000? Не забываем, что у нас всего 52 карты.

Решение:

Сейчас вы должны почувствовать себя особенным, потому что почти бесспорно, что конфигурация колоды, которую вы держите в руке, никогда не создавалась ни одним человеком за всю историю человечества на этой Земле, и ни в одной из ее параллельных Вселенных. Вы сейчас держите в руках нечто, что никогда не будет снова создано, отныне и до самого конца времен.

Согласитесь, непохоже, что 52 карты — это много. Но для попытки подсчитать количество возможных комбинаций из этих карт, вам понадобится не один свободный вечер. Общее количество статистических комбинаций колоды из 52-х карт — это то, что известно как «52 факториал», или «52!». Полностью это число выглядит так:

80,658,175,170,943,878,571,660,636,856,403,766,975,289,505,440,883,277, 824,000,000,000,000. Представьте, что «если бы у каждой звезды в нашей галактике было триллион планет, а на каждой планете жило бы триллион людей, и у каждого человека был триллион колод карт, и они бы перетасовывали карты 1000 раз в секунду и делали это со времен Большого взрыва, то возможно, только сейчас порядок бы повторился».

Если это взрывает вам мозг, подумайте об этом так: есть только 52 карты, но в алфавите почте вдвое меньше букв. А теперь задумайтесь о количестве книг, написанных путем комбинации этих букв. Их невероятно много.

4. Вероятность того, что родственник мужчины также мужчина — один к трем (не 50 на 50)

Условие:

Вы встречаете парня по имени, допустим, Чад. Чад говорит вам, что у него есть родственник (брат или сестра), но он больше ничего о нем вам не скажет. Какова вероятность того, что родственник Чада — брат? Должно быть 50 на 50, верно? Тот факт, что Чад мужчина, не может иметь никакого влияния на пол его родственника.

Решение:

Если Чад мужчина, то шансы на то, что у него есть брат, опускаются до одного к трем. Добро пожаловать в безумный мир математической вероятности.

Мы знаем то, что Чад мужчина, но не то, старше он или младше своего родственника. Вы также знаете, что существует четыре возможных гендерных комбинацих для двух детей, в зависимости от порядка, в котором они рождаются: мальчик/мальчик, мальчик/девочка, девочка/мальчик, девочка/девочка. Каждая комбинация имеет ровно 1 шанс из 4.

Но подождите! Вы также знаете, что Чад мужчина, поэтому исключаем комбинацию девочка/девочка. Таким образом, у нас остаются мальчик/девочка, девочка/мальчик или мальчик/мальчик. И в двух из трех случаев у него есть сестра, оставляя только 1 из 3 шансов на то, у него есть брат.

Существует похожий парадокс, под названием «Парадокс Монти Холла». Перед вами три двери — за одной из них новый автомобиль, а за двумя другими козы. Вы выбираете одну из дверей, но вместо того, чтобы показать ваш приз, ведущий говорит вам, что за какой-то из двух оставшихся дверей есть коза и предлагает изменить решение. Даже при том, что у вас теперь есть две двери для выбора и, казалось бы, шанс 50–50, ваш шанс на то, что вы выбрали правильную дверь, по-прежнему остается 1 к 3. То же самое и с сестрой Чада — даже при том, что, казалось бы, у него могли быть или брат или сестра, на самом деле у него могли быть брат, сестра или сестра.

5. Число «пи» можно вычислить, беспорядочно бросив на стол кучу скрепок
Условие:

Давайте сыграем в быструю игру. Все, что нужно, это листок бумаги, карандаш и горсть скрепок (или иглы, гвозди, или что-нибудь подобное).

Нарисуйте на бумаге две параллельные линии, длиной примерно в две скрепки. Теперь бросьте горсть скрепок на пространство между строками. Неважно, сколько скрепок вы используете, но чем больше, тем лучше, поэтому действуйте смелее.

Возьмите общее количество скрепок, умножьте его на два, затем разделите это число на количество скрепок, которые касаются одной из линий. Таким образом, если бы вы бросили 20 скрепок, и 13 из них касались одной из линий, то вы разделились бы 40 на 13. Число, которое вы получите, будет близко к «Пи». и если вы увеличите количество скрепок, оно будет становиться ближе и ближе.

Решение:

Да, «Пи» — это одна из тех загадочных вещей, которые просто существуют во Вселенной. В данном случае, если предполагается, что даже скрепки были брошены совершенно случайно, все их стороны и положения будут иметь тенденцию к выравниванию.

Почти таким же образом при подбрасывании монета будет иметь тенденцию к равному количеству «орлов и решек», даже при том, что каждый отдельный бросок случаен. И в этом случае, чем дольше вы бросаете монетку, тем более точным становится результат, поскольку постоянство сглаживает статистические отклонения. Если у вас нет времени или скрепок, чтобы проделать это самостоятельно, существует онлайн симулятор, который сделает это за вас (ссылка).

6. Вероятность подсказывает, что «чудеса» — это обычное дело

Условие:

Мы написали кучу статей об удивительных совпадениях — событиях, которые действительно произошли, несмотря на невероятно низкий шанс. Возьмем, к примеру, одно из наших любимых реальных совпадений — в 1974 году на Бермудских островах 17-летний подросток ехал на своем мопеде и был сбит машиной такси. Ровно через год его брат погиб управляя тем же самым мопедом, на той же самой улице, тем же самым такси, везшим того же самого пассажира. Отличный сюжет для «Секретных материалов».

Решение:

В этой ситуации невозможно рассчитать вероятность, как мы делали выше, потому что вы не можете количественно оценить каждую переменную (т. е. как часто этот пассажир ловил такси на этой улице, как часто братья ездили по той же улице, сколько других транспортных средств сталкивались с ними, и т. д.). Но вы можете рассчитать что-то вроде лотереи, потому что у нас есть определенные номера, на которые мы можем посмотреть.

Итак, каковы шансы выиграть в лотерею джек-пот дважды? Уберите свой блокнот, я просто скажу вам — примерно один из нескольких триллионов. Но поищите в Google людей, которые дважды выиграли в лотерею, и вы получите десятки результатов. Здесь действует тот же принцип, что и в примере с днем рождения выше. Хотя шансы, что это произойдет с каким-либо одним конкретным человеком, ничтожно малы, вероятность того, что это произойдет с кем-то, равна почти 100%. Вся наша трудность в понимании вероятности таких вещей заключается в том, что мы считаем себя центром Вселенной. Когда мы задаем вопрос: «каковы шансы?» мы на самом деле имеем в виду: «каковы шансы, что это произойдет со мной?»

Несколько статистиков провели эксперимент, в котором попросили людей рассказать о случившихся с ними невозможных совпадениях, и вычислили, насколько вероятными они были на самом деле. Результат? Как оказало, чудеса были еще более приземленными, чем они ожидали.

Когда одна женщина сообщила, что два раза за четыре месяца выиграла в лотерею, они подсчитали, что вероятность этого случая с этой конкретной женщиной была 1 из 17 трлн. Она счастливейшая женщина на планете. Тем не менее, возможность любого человека выиграть в лотерею дважды за четыре месяца была близка к 1 из 30. В принципе, это серьезная гарантия того, что кто-то станет невероятно богатым два раза до конца этого года.

Просто это произойдет не с вами.
Сподобався матеріал? Підтримай сайт і поділись матеріалом з друзями! :)
Опублікував admin
Подібні публікації
7 фактов о том, как перестать зависеть от мнения окружающих
Мы слишком часто ждём чего-то от людей, но всё, что нам нужно, заключено в нас самих.
9 интересных мыслей, которые могут изменить ваше мышление
Это проникновенная статья крутого коуч-тренера Марка Чернова. Это — отличный толчок к тому, чтобы начать мыслить иначе. Помните, вы — то, что вы думаете! «Сегодня утром, когда прошло примерно пять лет со дня смерти моего супруга, в мою дверь постучалась красивая пара и трое их детей. Мужчина улыбнулся и сказал: „Ваш муж был моим донором сердца. Он спас мне жизнь. Каждый день я молюсь
Люди дают любую оценку своих возможностей, кроме реальной
Вы не так умны как думаете (и не так глупы) Чаще всего мы думаем, что отлично делаем что-то — порой лучше большинства. Большинство работников считают, что они явно «выше среднего» среди других таких же работяг, а около трети вообще думают, что они входят в 5% лучших специалистов в своём деле.
5 способов быстрее принимать решения
Не позволяйте процессу принятия решения красть ваше время Сценарий вы знаете. Прежде чем принять решение, вы должны взвесить все «за» и «против». Учесть неопределённость, факторы времени, вопросы безопасности. Решения необходимо принимать в офисе, в спальне, на кухне и в классе. Весь день. Каждый день. Это давит нам на мозги каждый раз, когда мы пытаемся решить, позволить ли своим
Почему в детстве время идёт медленнее, чем сейчас
Вы когда-нибудь задумывались, почему в детстве время идёт медленнее, чем сейчас? Когда мы были маленькими, время буквально «тянулось»: дождаться окончания тихого часа в детском саду, или конца последнего урока в школе, было непосильной задачей. Сейчас время летит просто с огромной скоростью.
Коментарі
Додати коментар
Додати свій коментар:
Ваше ім'я:
Ваш E-Mail:
  • bowtiesmilelaughingblushsmileyrelaxedsmirk
    heart_eyeskissing_heartkissing_closed_eyesflushedrelievedsatisfiedgrin
    winkstuck_out_tongue_winking_eyestuck_out_tongue_closed_eyesgrinningkissingstuck_out_tonguesleeping
    worriedfrowninganguishedopen_mouthgrimacingconfusedhushed
    expressionlessunamusedsweat_smilesweatdisappointed_relievedwearypensive
    disappointedconfoundedfearfulcold_sweatperseverecrysob
    joyastonishedscreamtired_faceangryragetriumph
    sleepyyummasksunglassesdizzy_faceimpsmiling_imp
    neutral_faceno_mouthinnocent
Введіть два слова, показані на зображенні: *
Топ Коментарі Архів
Анатолий пише:
Выбор фото. Все предоставленные ею до 200шт. (потом было добавлено еще столько-же)- фото были низкого качества).
Анатолий пише:
Изначально, был против публичного обсуждения, но сын убедил меня в обратном. Она поливает меня и мою семью грязью и
Lara911 пише:
Я ще коли читала перший пост що тоді хотіла поцікавитись, а де можна ознайомитись з творчістю Людмили? Гугл нічого не
«    Листопад 2024    »
ПнВтСрЧтПтСбНд
 123
45678910
11121314151617
18192021222324
252627282930 
Листопад 2024 (3)
Жовтень 2024 (12)
Вересень 2024 (6)
Серпень 2024 (14)
Липень 2024 (4)
Червень 2024 (4)
Опитування
Чи розкажете ви про нас своїм друзям?